Abstract
This study evaluates the performance of the Grey Wolf Optimizer (GWO) in optimizing investment portfolios, comparing it with gradient-based methods and other metaheuristics. While various variants of this algorithm exist, no studies have directly compared it to these approaches within the same comparative framework. To this end, Markowitz's mean-variance model is employed, analyzing its capacity to maximize expected returns within an acceptable risk level based on the Sharpe ratio and convergence time. The study follows a quantitative-longitudinal design, examining investment strategies using historical data sourced from Investing.com. Two portfolios are considered: one with 20 assets for diversification and another with 10 high-volatility assets. Optimization is implemented in Matlab, comparing the fmincon, genetic algorithm, particle swarm optimization, pattern search, and GWO methods with 4, 10, and 20 agents. The results highlight that GWO achieves a balance between performance and computational efficiency, positioning itself as a robust alternative compared to the other evaluated methods.
References
Asaithambi, S., Rajappa, M., & Ravi, L. (2019). Optimal transistor sizes and bias current values of CMOS differential amplifier and an operational amplifier using a hybrid grey wolf optimization method. Journal of Intelligent & Fuzzy Systems, 36(5), 4235–4245. https://doi.org/10.3233/JIFS-169981
Chang, K.-H., & Young, M. N. (2019). Behavioral stock portfolio optimization considering holding periods of B-stocks with short-selling. Computers & Operations Research, 112, 104773. https://doi.org/10.1016/j.cor.2019.104773
De Greiff, J., & Rivera, G. (2018). Optimización de portafolios de inversión con costos de transacción utilizando un algoritmo genético multiobjetivo: Caso aplicado a la Bolsa de Valores de Colombia. Estudios Gerenciales, 34(146), 74-87. https://doi.org/10.18046/j.estger.2018.146.2812
Doering, J., Kizys, R., Juan, A. A., Fito, A., & Polat, O. (2019). Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends. Operations Research Perspectives, 6, 100121. https://doi.org/10.1016/j.orp.2019.100121
Fernández Cortez, V., Valle Cruz, D., & Lizola Margolis, P. E. (2019). Optimización de portafolios de inversión con algoritmos genéticos. Revista de Investigación en Ciencias Contables y Administrativas, 4(2). https://ricca.umich.mx/index.php/ricca/article/view/38
Gunjan, A., & Bhattacharyya, S. (2023). A brief review of portfolio optimization techniques. Artificial Intelligence Review, 56(7), 3847–3886. https://doi.org/10.1007/s10462-022-10273-7
Khosravi, A., & Azarnik, A. (2024). LDA-GWO: Utilizing LDA and Gray Wolf Optimizer in diabetes diseases diagnosis. In 2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP) (pp. 1–7). https://doi.org/10.1109/AISP61396.2024.10475253
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974
Mazraeh, N. B., Daneshvar, A., Madanchi Zaj, M., & Roodposhti, F. R. (2022). Stock portfolio optimization using a combined approach of multi-objective grey wolf optimizer and machine learning preselection methods. Computational Intelligence and Neuroscience, 2022, 5974842, 20 pages. https://doi.org/10.1155/2022/5974842
Mendizabal Zubeldia, A., Miera Zabalza, L. M., & Zubia Zubiaurre, M. (2002). El modelo de Markowitz en la gestión de carteras. Cuadernos de Gestión, 2(1), 33–46. https://doi.org/10.5295/cdg.19217am
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Mirjalili, S., Mirjalili, S. M., Saremi, S., Faris, H., & Aljarah, I. (2016). Grey wolf optimizer: A review of recent variants and applications. Neural Computing and Applications, 27, 3055–3065. https://doi.org/10.1007/s00521-017-3272-5
Ortiz, R., Contreras, M., & Mellado, C. (2021). Improving the volatility of the optimal weights of the Markowitz model. Economic Research-Ekonomska Istraživanja, 35(1), 2836–2858. https://doi.org/10.1080/1331677X.2021.1981963
Sakalauskas, V., Kriksciuniene, D., & Imbrazas, A. (2023). Stock portfolio risk-return ratio optimisation using grey wolf model. In Springer International Publishing (pp. 211–232). https://doi.org/10.1007/978-3-031-24453-7_10
Wang, M., Liu, W., Chen, M., Huang, X., Han, W. (2021). A band selection approach based on a modified gray wolf optimizer and weight updating of bands for hyperspectral image. Applied Soft Computing 112, 107805. https://doi.org/10.1016/j.asoc.2021.107805
Xue, H., Lu, S., & Zhang, C. (2024). An adaptive control based on improved gray wolf algorithm for mobile robots. Applied Sciences, 14(7), 7092. https://doi.org/10.3390/app14167092
Yu, X., & Liu, Z. (2022). Multiple strategies grey wolf optimizer for constrained portfolio optimization. Journal of Intelligent & Fuzzy Systems, 43, 1203–1227. https://doi.org/10.3233/JIFS-212729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.