Construction of a Prototype for Atmospheric CO₂ Conversion into Plant Fertilizer in Tacna
Sciencevolution v4.2 2025 - 118 - Portada
¨PDF (Español (España))

Keywords

Carbon Dioxide Capture
Calcium Chloride
Calcium Carbonate
Greenhouse Gases
Sustainable Agriculture
Nature Fertilizer
Climate Change

How to Cite

Alferez Escobar, D. I. (2025). Construction of a Prototype for Atmospheric CO₂ Conversion into Plant Fertilizer in Tacna. Journal SCIENCEVOLUTION, 4(2), 118–127. https://doi.org/10.61325/ser.v4i2.186

ARK

https://n2t.net/ark:/55066/SER.v4i2.186

Abstract

This study aimed to design and construct a prototype capable of capturing carbon dioxide (CO₂) from the air using calcium chloride (CaCl₂), to transform it into calcium carbonate (CaCO₃) and utilize it as natural fertilizer. A quantitative-experimental approach was employed, with testing under controlled environmental conditions and in three urban areas of Tacna, Peru. Three CaCl₂ doses (20 g, 40 g, and 60 g) were evaluated during 5-minute exposures, measuring CO₂ concentration before and after each intervention. Results showed that 40 g of CaCl₂ captured 320 ppm of CO₂, while 20 g and 60 g captured 100 ppm and 240 ppm, respectively. Capture was not linear, indicating that factors like humidity and airflow influence process efficiency. It is concluded that the prototype offers an accessible alternative to mitigate climate change and produce sustainable fertilizers. Its application in rural contexts represents a viable strategy for carbon capture and agricultural soil improvement, contributing to greenhouse gas (GHG) reduction and strengthening sustainable agriculture.

https://doi.org/10.61325/ser.v4i2.186
¨PDF (Español (España))

References

Abid, A. R., Mailhiot, M., Boudjemia, N., Pelimanni, E., Milosavljevic, A. R., Saak, C.-M., Huttula, M., Bjorneholm, O., & Patanen, M. (2021). The effect of relative humidity on CaCl₂ nanoparticles studied by soft X-ray absorption spectroscopy. RSC Advances, 11(4), 2103–2111. https://doi.org/10.1039/d0ra08943e

Aghajanian, S., Nieminen, H., Laari, A., & Koiranen, T. (2021). Integration of a calcium carbonate crystallization process and membrane contactor–based CO₂ capture. Separation and Purification Technology, 274, 119043. https://doi.org/10.1016/j.seppur.2021.119043

Chen, P. C., & Zhuo, S. H. (2020). CO₂ capture in a bubble-column scrubber using MEA/CaCl₂/H₂O solution—absorption and precipitation. Crystals, 10(8), 694. https://doi.org/10.3390/cryst10080694

Choi, D., Shin, J., & Park, Y. (2021). Effects of CaCl₂ on cyclic carbonation-calcination kinetics of CaO-based composite for potential application to solar thermochemical energy storage. Chemical Engineering Science, 230, 116207. https://doi.org/10.1016/j.ces.2020.116207

Cisneros Jayo, G. F., & Nonones Vásquez, N. D. (2024). Impact of the use of fertilizers on agricultural soils: A systematic review of the scientific literature. In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0. (pp. 1-10). LACCEI. https://doi.org/10.18687/LACCEI2024.1.1.391

Comes, J., Islamovic, E., Lizandara-Pueyo, C., & Seto, J. (2024). Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Frontiers in Chemistry, 12, 1472284. https://doi.org/10.3389/fchem.2024.1472284

Hanein, T., Simoni, M., Woo, C. L., Provis, J. L., & Kinoshita, H. (2021). Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO₂ capture, through production of sodium carbonate. Energy & Environmental Science, 14(12), 6595–6604. https://doi.org/10.1039/d1ee02637b

He, Z., Ding, B., Pei, S., Cao, H., Liang, J., & Li, Z. (2023). The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Science of The Total Environment, 905, 166917. https://doi.org/10.1016/j.scitotenv.2023.166917

Heuer, J., Kraus, Y., Vučak, M., & Zeng, A.-P. (2022). Enhanced sequestration of carbon dioxide into calcium carbonate using pressure and a carbonic anhydrase from alkaliphilic Coleofasciculus chthonoplastes. Engineering in Life Sciences, 22(3-4), 178–191. https://doi.org/10.1002/elsc.202100033

Grupo Intergubernamental de Expertos sobre el Cambio Climático. (2023). Sections. In Core Writing Team, H. Lee & J. Romero (Eds.), Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–115). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647

Agencia Internacional de la Energía. (2025). Global Energy Review 2025: CO₂ Emissions. International Energy Agency. Recuperado el 19 de abril de 2025, de https://www.iea.org/reports/global-energy-review-2025/co2-emissions

Kazanç, F., Zhang, P., Saha, P., & Lu, Y. (2024). Techno-economic and life cycle environmental assessments of CO₂ utilization for value-added precipitated calcium carbonate and ammonium sulfate fertilizer co-production. Journal of CO₂ Utilization, 90, 102992. https://doi.org/10.1016/j.jcou.2024.102992

Morales Garcilazo, F. (2023). Agricultura sustentable, esencial para la reducción de emisiones de CO2. CIMMYT. Recuperado el 23 de abril de 2025, de https://www.cimmyt.org/es/noticias/agricultura-sustentable-esencial-para-la-reduccion-de-emisiones-de-co2/

Ozyhar, T., Marchi, M., Facciotto, G., Bergante, S., & Luster, J. (2022). Combined application of calcium carbonate and NPKS fertilizer improves early-stage growth of poplar in acid soils. Forest Ecology and Management, 514, 120211. https://doi.org/10.1016/j.foreco.2022.120211

Organización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. Recuperado el 7 de abril de 2025, de https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/

Programa de las Naciones Unidas para el Medio Ambiente. (2024). Emissions Gap Report 2024: No more hot air … please! With a massive gap between rhetoric and reality, countries draft new climate commitments. https://wedocs.unep.org/20.500.11822/46404

Rodríguez López, A., Esquivias-Fierro, A., Rodríguez-Amaral, E., Lara Banda, M., & Chávez-Guerrero, L. (2024). Obtención de carbonato de calcio de alta pureza (CaCO₃) utilizando materia prima comercial de bajo costo (cal). Química Hoy, 13(1), 31–36. https://doi.org/10.29105/qh13.1-375

Servicio Nacional de Meteorología e Hidrología del Perú. (s.f.). Mapa climático del Perú. Recuperado el 27 de abril de 2025, de https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru

Sorimachi, K. (2022). Innovative method for CO₂ fixation and storage. Scientific Reports, 12, 1694. https://doi.org/10.1038/s41598-022-05151-9

Wang, Z., Zhang, C., & Li, S. (2022). Study on the conversion of CaCl₂ with H₂O and CO₂ for dechlorinating pyrolysis of municipal solid waste. Thermochimica Acta, 717, 179362. https://doi.org/10.1016/j.tca.2022.179362

Yablonovitch, E., & Deckman, H. (2022). Scalable, economical, and stable sequestration of agricultural fixed carbon. SSRN., https://doi.org/10.2139/ssrn.4305125

Zhao, S., Shao, Q., Zhang, L., Zhou, X., Guo, H., & Mi, Z. (2025). Job seekers have more suitable job opportunities in decarbonization in the Global North than in the Global South. Communications Earth & Environment, 6(272). https://doi.org/10.1038/s43247-025-02230-3

Zhao, X., Sun, S., Wang, Y., Zhang, Y., Zhu, Y., Zong, B., Hu, J., & Wu, C. (2024). Enhanced CO₂ capture and reverse water gas shift reaction using CaO in NaCl-CaCl₂ molten salt medium. Carbon Capture Science & Technology, 12, 100221. https://doi.org/10.1016/j.ccst.2024.100221

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.