Modeling PM2.5, PM10, and SO2 Dispersion in Two Huamachuco Mining Zones Using the HYSPLIT Model
Sciencevolution v4.2 2025 - 233 - Portada
PDF (Español (España))

Keywords

Atmospheric Pollution
Simulation
HYSPLIT
Mining
Huamachuco

How to Cite

Custodio Laiza, P. A. (2025). Modeling PM2.5, PM10, and SO2 Dispersion in Two Huamachuco Mining Zones Using the HYSPLIT Model. Journal SCIENCEVOLUTION, 4(2), 233–245. https://doi.org/10.61325/ser.v4i2.197

ARK

https://n2t.net/ark:/55066/SER.v4i2.197

Abstract

This study aimed to analyze the simulation of atmospheric pollutant dispersion generated by mining activities at Cerro El Toro and La Arena, located in Huamachuco, Peru, during 2022. A quantitative approach with a descriptive, cross-sectional design and applied research type was employed. The technique used was indirect observation through the processing of atmospheric data in the HYSPLIT model, enabling the estimation of the trajectory, area, and distance reached by PM2.5, PM10, and SO2 pollutants. Results showed the predominant wind direction was from east to west. In both cases, pollutant concentrations exceeded national reference values, reaching distances less than 7.84 km and areas up to 1,904 ha. Cerro El Toro demonstrated a greater impact on populated areas, while at La Arena, the effects were confined to the surrounding ecosystem. It is concluded that the dispersion of these pollutants constitutes a potential risk to public health and the environment, especially in inhabited areas near mining operations lacking permanent atmospheric monitoring.

https://doi.org/10.61325/ser.v4i2.197
PDF (Español (España))

References

Alva Huamán, D. A. (2019). Concentración de material particulado, monóxido de carbono, dióxido de azufre y dióxido de nitrógeno en la planta de producción de óxido de calcio Puylucana, Cajamarca 2018 [Tesis de maestría, Universidad Nacional de Cajamarca]. Repositorio Institucional UNC. http://hdl.handle.net/20.500.14074/3523

Ambastha, S. K., & Haritash, A. K. (2022). Emission of respirable dust from stone quarrying, potential health effects, and its management. Environmental Science and Pollution Research, 29, 6670–6677. https://doi.org/10.1007/s11356-021-16079-4

Bera, B., Bhattacharjee, S., Sengupta, N., & Saha, S. (2022). Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geoscience Frontiers, 13. https://doi.org/10.1016/j.gsf.2021.101291

Chandra Joshi, D., Negi, P., Devi, S., Lohani, H., Kumar, R., Gupta, M., & Chiau Ming, L. (2025). Fine particulate matter (PM2.5, PM10): A silent catalyst for chronic lung diseases in India; a comprehensive review. Environmental Challenges, 20, 101215. https://doi.org/10.1016/j.envc.2025.101215

Clarity. (2023). Monitoreo de la calidad del aire en la minería: importancia y mejores prácticas. https://www.clarity.io/blog/monitoring-air-quality-in-mining-importance-best-practices

Collyns, D. (2024). Perú: Comunidades envenenadas por minería en Cerro de Pasco. Mongabay. https://es.mongabay.com/2024/01/peru-comunidades-envenenadas-por-mineria-cerro-de-pasco/

Cruz Núñez, X., & Bulnes Aquino, E. (2019). Emission impact of wildfires: El Tepozteco 2016. Atmósfera, 32(2), 85–93. https://doi.org/10.20937/ATM.2019.32.02.01

Cvetkovic Vega, A., Maguiña, J. L., Soto, A., Lama-Valdivia, J., & Correa-López, L. E. (2021). Estudios transversales. Revista de la Facultad de Medicina Humana, 21(1), 179–185. https://revistas.urp.edu.pe/index.php/RFMH/article/view/3069/4422

Ferrero, F., Abrutzky, R., Ossorio, M. F., & Torres, F. (2019). Efectos de la contaminación y el clima en las consultas pediátricas por infección respiratoria aguda en la Ciudad de Buenos Aires. Archivos Argentinos de Pediatría, 117(6), 368–374. http://dx.doi.org/10.5546/aap.2019.368

Hernández-Carrillo, F., Campillo Labrandero, M., & Sánchez-Mendiola, M. (2018). Investigación traslacional en ciencias de la salud: implicaciones educativas y retos. Investigación en educación médica, 7(28), 85-97. https://doi.org/10.22201/facmed.20075057e.2018.28.18146

Hernández-Garcés, A., Jáuregui-Haza, U., González, J. A., Casares-Long, J. J., Saavedra-Vázquez, S., Guzmán-Martínez, F., & Torres-Valle, A. (2016). Aplicaciones del modelo lagrangiano de dispersión atmosférica CALPUFF. Ciencias de la Tierra y el Espacio, 17(1), 32–44. https://www.iga.cu/vol17-no1-art3/

HYSPLIT. (2025). READY. Sistema de Visualización y Aplicaciones Ambientales en Tiempo Real. https://www.ready.noaa.gov/index.php

Ministerio del Ambiente del Perú. (2017). Decreto Supremo N° 003-2017-MINAM: Aprueban los Estándares de Calidad Ambiental (ECA) para Aire y establecen disposiciones complementarias. Sistema Nacional de Información Ambiental (SINIA). https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-aire-establecen-disposiciones

Ministerio del Ambiente del Perú. (2020). Concentración del material particulado (PM2.5) en Lima Metropolitana, 2014-2019 (μg/m³). Sistema Nacional de Información Ambiental (SINIA). https://sinia.minam.gob.pe/inea/indicadores/concentracion-del-material-particulado-pm2-5-en-lima-metropolitana-2014-2019-ug-m3/

Moghimi Dehkordi, M., Pournuroz Nodeh, Z., Soleimani Dehkordi, K., Salmanvandi, H., Rasouli Khorjestan, R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23. https://doi.org/10.1016/j.rineng.2024.102729

Monaci, F., Ancora, S., Paoli, L., Loppi, S., & Franzaring, J. (2022). Calidad del aire en pueblos postmineros: seguimiento de elementos potencialmente tóxicos mediante hojas de árboles. Environmental Geochemistry and Health, 45, 843–859. https://doi.org/10.1007/s10653-022-01252-6

Municipalidad de Lima. (2020). Calidad del aire en Lima mejoró durante estado de emergencia, según monitoreo sobre partículas contaminantes. Gobierno del Perú. https://www.gob.pe/institucion/munilima/noticias/576974-calidad-del-aire-en-lima-mejoro-durante-estado-de-emergencia-segun-monitoreo-sobre-particulas-contaminantes

Office of Environmental Health Hazard Assessment (OEHHA), State of California. (s.f.). PM2.5. Recuperado el 16 de mayo de 2025 de https://oehha.ca.gov/calenviroscreen/indicator/pm25

Organización Mundial de la Salud. (2024). Contaminación del aire ambiente (exterior). https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Ortínez-Álvarez, A., Ruiz-Suárez, L. G., Ortega, E., García-Reynoso, A., Peralta, O., López-Gaona, A., Castro, T., & Martínez-Arroyo, A. (2021). Emission inventory point source visualization on Google Earth and integrated with HYSPLIT model. Atmósfera, 34(2), 143–156. https://doi.org/10.20937/ATM.52834

Ramos Díaz, R., Viña Romero, M. M., & Gutiérrez Nicolás, F. (2020). Investigación aplicada en tiempos de COVID-19. Revista de la OFIL, 30(2), 93. https://dx.doi.org/10.4321/s1699-714x2020000200003

Rolph, G., Stein, A., & Stunder, B. (2017). Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling & Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025

Shahid, I., Chishtie, F., Bulbul, G., Shahid, M. Z., Shafique, S., & Lodhi, A. (2019). State of air quality in twin cities of Pakistan: Islamabad and Rawalpindi. Atmósfera, 32(1), 71–84. https://doi.org/10.20937/atm.2019.32.01.06

Shen, Y., Hu, X., Ma, Y., & Chen, G. (2017). Warning Technology for Air Nuclear Pollution Diffusion of Nuclear Power Plant. Journal of Northeastern University Natural Science, 38(10), 1482–1486. https://doi.org/10.12068/j.issn.1005-3026.2017.10.023

Shikwambana, L., Ncipha, X., Sangeetha, S. K., Sivakumar, V., & Mhangara, P. (2021). Qualitative study on the observations of emissions, transport, and the influence of climatic factors from sugarcane burning: A South African perspective. International Journal of Environmental Research and Public Health, 18(14), 7672. https://doi.org/10.3390/ijerph18147672

Swartz, J. S., Van Zyl, P. G., Beukes, J. P., Labuschagne, C., Brunke, E. G., Portafaix, T., Galy-Lacaux, C., & Pienaar, J. J. (2020). Twenty-one years of passive sampling monitoring of SO2, NO2 and O3 at the Cape Point GAW station, South Africa. Atmospheric Environment, 22. https://doi.org/10.1016/j.atmosenv.2019.117128

Thangavel, P., Park, D., & Lee, Y. C. (2022). Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. International Journal of Environmental Research and Public Health, 19(12). https://doi.org/10.3390/ijerph19127511

United States Environmental Protection Agency. (s.f.). Regulatory and guidance information by topic: Air. Recuperado el 16 de mayo de 2025 de https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-topic-air

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.